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Objective

Objective

To propose an alternative solution to the acoustic wave
equation using the orthogonal Laguerre polynomials;

Cosine operator in the two-step wave equation solution is
expanded using Laguerre polynomials;

This new solution allows us to use a larger time-step than in
the conventional methods (FD, PS);
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Introduction

Finite Difference Method

Numerical solution for the wave equation based on the Taylor
series expansion.

It has been common to use FD approximations for both the
time and spatial evolution of wavefields.
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Chebyshev Polynomials

Rapid Expansion Method (REM)

It is the base of the recursive solution;

It is more accurate than the usual finite difference schemes;

It is a stable method;

It can march in time with larger steps.
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Theory

Acoustic wave equation

∂2u(x , t)

∂t2
+ L2u(x , t) = f (x , t) (1)

where −L2 = c2(x)∇2.

Solution (VOP)

P(x , t+∆t)+P(x , t−∆t) = 2cos(L∆t)P(x , t)+S(x , t±∆t) (2)
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Hermite expansion

cos(L∆t) =
e−iL∆t + e iL∆t

2
(3)

Generating function (Arfken, 1985)

e−s
2+2sx =

∞∑
k=0

sk

k!
Hk(x) (4)

Exponential operator:

e−iL∆t = e−(∆t/2λ)2
e−(−i∆t/2λ)2+2λL(−i∆t/2λ) (5)

Here the arbitrary parameter λ is introduced for convenience.
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Laguerre expansion

Relation between Laguerre and Hermite polynomials

H2k(x) = (−1)k 22k k! L−1/2
k (x2) (8)

Cosine expansion

cos(L∆t) = e−(∆t/2λ)2 ∑∞
k=0

(−1)k

2k!

(
∆t
2λ

)2k
H2k(λL)

=
∑∞

k=0 Ck (λ∆t) φk(λ2L2) (9)
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Expansion coefficient:
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k (λ2L2) (12)

Recurrence relation:

φk(x2) =
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φ0(x2) = 1 and φ1(x2) = (1/2− x2)
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Wave equation solution

P(x , t+∆t)+P(x , t−∆t) = 2cos(L∆t)P(x , t)+S(x , t±∆t) (14)

Recursive solution

P(x , t + ∆t) + P(x , t −∆t) = 2
∑∞

k=0 Ck(λ∆t)φk(λ2L2)P(t)

+S(x , t ±∆t) (15)
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Wave equation solution

Second order approximation in time

P(x , t + ∆t) + P(x , t −∆t) = 2αP(x , t)− β∆t2L2P(x , t)

+ S(x , t ±∆t) (16)

where

α = C0[1 + (∆t/2λ)2] and β = C0 = e−(∆t/2λ)2

.

R = πc
√

(1/∆x2) + (1/∆z2) and λ = N/R

.
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Using 4 terms of each expansion
cos(φ)
h(φ) − Exp.Taylor
f(φ) − Exp.Laguerre
g(φ) − Exp.Chebyshev

Plot with the results of the expansions of the cosine function using 4

terms by: Taylor series, Chebyshev and Laguerre polynomial expansions.
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Seismic Modeling Results
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P-velocity model for the salt dome model.
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Snapshots at the times of: 0.8 s and 1 s using Chebyshev expansion (top)

and Laguerre expansion (bottom). Maximum frequency of 25 Hz and

with a time stepping of 2 ms .
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Snapshots generated from the salt dome model using Chebyshev (a) and

Laguerre expansion (b) at the time of 1s. Maximum frequency of 25 Hz

and with a time stepping of 2 ms .
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Seismogram generated from the salt dome model using the Chebyshev

and Laguerre expansion with time stepping of 2 ms. The data was

recorded at the depth of 20 m .
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Seismic Migration Results
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EAGE-SEG model and zero offset section.
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Seismic Migration Results
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RTM results of the EAGE-SEG data set using 5 and 10 recursion terms.
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Seismic Migration Results

RTM result of the EAGE-SEG data set using 5 recursion terms
highlighting the imaged structures.
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Conclusions

Approximations for the cosine operator using Hermite and
Laguerre polynomials;

Satisfactory results for seismic modeling of complex models,
stable and free of dispersion noise;

RTM of pos-stack dataset with high quality results;

Parameter λ was set equal to 8/R which ensured best results.
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