Time-steping evolution of wave-equation using a Laguerre polynomial expansion scheme.

Eduarda Rego ${ }^{1}$, Reynam Pestana ${ }^{1}$ and Edvaldo Araujo ${ }^{1}$
${ }^{1}$ Federal University of Bahia CPGG/UFBA and INCT-GP/CNPq

85th SEG Meeting
18-23 October 2015
New Orleans, LA

1 Introduction

2 Theory

3 Synthetic Examples - Modeling and migration

4 Conclusions

Objective

- To propose an alternative solution to the acoustic wave equation using the orthogonal Laguerre polynomials;
- Cosine operator in the two-step wave equation solution is expanded using Laguerre polynomials;
- This new solution allows us to use a larger time-step than in the conventional methods (FD, PS);

Objective

- To propose an alternative solution to the acoustic wave equation using the orthogonal Laguerre polynomials;
- Cosine operator in the two-step wave equation solution is expanded using Laguerre polynomials;
- This new solution allows us to use a larger time-step than in the conventional methods (FD, PS);

Objective

- To propose an alternative solution to the acoustic wave equation using the orthogonal Laguerre polynomials;
- Cosine operator in the two-step wave equation solution is expanded using Laguerre polynomials;
- This new solution allows us to use a larger time-step than in the conventional methods (FD, PS);

Introduction

Finite Difference Method

- Numerical solution for the wave equation based on the Taylor series expansion.
- It has been common to use FD approximations for both the time and spatial evolution of wavefields.

Introduction

Finite Difference Method

- Numerical solution for the wave equation based on the Taylor series expansion.
- It has been common to use FD approximations for both the time and spatial evolution of wavefields.

Introduction

Finite Difference Method

- Numerical solution for the wave equation based on the Taylor series expansion.
- It has been common to use FD approximations for both the time and spatial evolution of wavefields.

Introduction

Finite difference issues:

- A limit on the marching time step size;
- Numerical dispersion.

Introduction

Finite difference issues:

- A limit on the marching time step size;
- Numerical dispersion.

Introduction

Finite difference issues:

- A limit on the marching time step size;
- Numerical dispersion.

Introduction

Two step extrapolation equation

- Cosine term expansion
- Taylor series

Introduction

Two step extrapolation equation

- Cosine term expansion
- Taylor series
- Ortogonal polynomials

Introduction

Two step extrapolation equation

- Cosine term expansion
- Taylor series
- Ortogonal polynomials

Introduction

Two step extrapolation equation

- Cosine term expansion
- Taylor series
- Ortogonal polynomials

Introduction

Chebyshev Polynomials

- Rapid Expansion Method (REM)
- It is the base of the recursive solution;

Introduction

Chebyshev Polynomials

- Rapid Expansion Method (REM)
- It is the base of the recursive solution;

It is more accurate than the usual finite difference schemes;

Introduction

Chebyshev Polynomials

- Rapid Expansion Method (REM)
- It is the base of the recursive solution;
- It is more accurate than the usual finite difference schemes;
- It is a stable method;

Introduction

Chebyshev Polynomials

- Rapid Expansion Method (REM)
- It is the base of the recursive solution;
- It is more accurate than the usual finite difference schemes;
- It is a stable method;
- it can march in time with larger steps

Introduction

Chebyshev Polynomials

- Rapid Expansion Method (REM)
- It is the base of the recursive solution;
- It is more accurate than the usual finite difference schemes;
- It is a stable method;
- It can march in time with larger steps.

Chebyshev Polynomials

- Rapid Expansion Method (REM)
- It is the base of the recursive solution;
- It is more accurate than the usual finite difference schemes;
- It is a stable method;
- It can march in time with larger steps.

Introduction

Ortogonal polynomials

- Chebyshev Polynomials

- Argument bounded $[-1 ; 1]$

Introduction

Ortogonal polynomials

- Chebyshev Polynomials
- Argument bounded $[-1 ; 1]$
- Laguerre Polynomials

Introduction

Ortogonal polynomials

- Chebyshev Polynomials
- Argument bounded $[-1 ; 1]$
- Laguerre Polynomials
- Hermite Polynomials

Introduction

Ortogonal polynomials

- Chebyshev Polynomials
- Argument bounded $[-1 ; 1]$
- Laguerre Polynomials
- Hermite Polynomials

Introduction

Ortogonal polynomials

- Chebyshev Polynomials
- Argument bounded $[-1 ; 1]$

■ Laguerre Polynomials

- Hermite Polynomials

Introduction

Ortogonal polynomials

- Chebyshev Polynomials
- Argument bounded $[-1 ; 1]$

■ Laguerre Polynomials

- Hermite Polynomials

Acoustic wave equation

$$
\begin{equation*}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}+L^{2} u(x, t)=f(x, t) \tag{1}
\end{equation*}
$$

where $-L^{2}=c^{2}(x) \nabla^{2}$.

Solution (VOP)

$P(x, t+\Delta t)+P(x, t-\Delta t)=2 \cos (L \Delta t) P(x, t)+S(x, t \pm \Delta t)$ (2)

Acoustic wave equation

$$
\begin{equation*}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}+L^{2} u(x, t)=f(x, t) \tag{1}
\end{equation*}
$$

where $-L^{2}=c^{2}(x) \nabla^{2}$.

Solution (VOP)

$$
\begin{equation*}
P(x, t+\Delta t)+P(x, t-\Delta t)=2 \cos (L \Delta t) P(x, t)+S(x, t \pm \Delta t) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\cos (L \Delta t)=\frac{e^{-i L \Delta t}+e^{i L \Delta t}}{2} \tag{3}
\end{equation*}
$$

■ Generating function (Arfken, 1985)

$$
\begin{equation*}
e^{-s^{2}+2 s x}=\sum_{k=0}^{\infty} \frac{s^{k}}{k!} H_{k}(x) \tag{4}
\end{equation*}
$$

- Exponential operator:

Here the arbitrary parameter λ is introduced for convenience.

$$
\begin{equation*}
\cos (L \Delta t)=\frac{e^{-i L \Delta t}+e^{i L \Delta t}}{2} \tag{3}
\end{equation*}
$$

■ Generating function (Arfken, 1985)

$$
\begin{equation*}
e^{-s^{2}+2 s x}=\sum_{k=0}^{\infty} \frac{s^{k}}{k!} H_{k}(x) \tag{4}
\end{equation*}
$$

- Exponential operator:

$$
\begin{equation*}
e^{-i L \Delta t}=e^{-(\Delta t / 2 \lambda)^{2}} e^{-(-i \Delta t / 2 \lambda)^{2}+2 \lambda L(-i \Delta t / 2 \lambda)} \tag{5}
\end{equation*}
$$

Here the arbitrary parameter λ is introduced for convenience.

Hermite expansion

- Hermite expansion

$$
\begin{equation*}
e^{-i L \Delta t}=e^{-(\Delta t / 2 \lambda)^{2}} \sum_{k=0}^{\infty} \frac{(-i)^{k}}{k!}\left(\frac{\Delta t}{2 \lambda}\right)^{k} H_{k}(\lambda L) \tag{6}
\end{equation*}
$$

About the convergence of this series:

$$
k>(e \Delta t / 2 \lambda)
$$

- Cosine expansion

- Hermite expansion

$$
\begin{equation*}
e^{-i L \Delta t}=e^{-(\Delta t / 2 \lambda)^{2}} \sum_{k=0}^{\infty} \frac{(-i)^{k}}{k!}\left(\frac{\Delta t}{2 \lambda}\right)^{k} H_{k}(\lambda L) \tag{6}
\end{equation*}
$$

About the convergence of this series:

$$
k>(e \Delta t / 2 \lambda)
$$

- Cosine expansion

$$
\begin{equation*}
\cos (L \Delta t)=e^{-(\Delta t / 2 \lambda)^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k!}\left(\frac{\Delta t}{2 \lambda}\right)^{2 k} H_{2 k}(\lambda L) \tag{7}
\end{equation*}
$$

Laguerre expansion

- Relation between Laguerre and Hermite polynomials

$$
\begin{equation*}
H_{2 k}(x)=(-1)^{k} 2^{2 k} k!\mathcal{L}_{k}^{-1 / 2}\left(x^{2}\right) \tag{8}
\end{equation*}
$$

- Cosine expansion

$\cos (L \Delta t)=e^{-(\Delta t / 2 \lambda)^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k!}\left(\frac{\Delta t}{2 \lambda}\right)^{2 k} H_{2 k}(\lambda L)$

$$
=\sum_{k=0}^{\infty} C_{k}(\lambda \Delta t) \phi_{k}\left(\lambda^{2} L^{2}\right)
$$

- Relation between Laguerre and Hermite polynomials

$$
\begin{equation*}
H_{2 k}(x)=(-1)^{k} 2^{2 k} k!\mathcal{L}_{k}^{-1 / 2}\left(x^{2}\right) \tag{8}
\end{equation*}
$$

- Cosine expansion

$$
\begin{align*}
\cos (L \Delta t)= & e^{-(\Delta t / 2 \lambda)^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k!}\left(\frac{\Delta t}{2 \lambda}\right)^{2 k} H_{2 k}(\lambda L) \\
& =\sum_{k=0}^{\infty} C_{k}(\lambda \Delta t) \phi_{k}\left(\lambda^{2} L^{2}\right) \tag{9}
\end{align*}
$$

Laguerre expansion

- Expansion coefficient:

$$
\begin{equation*}
C_{k}(\lambda \Delta t)=e^{-(\Delta t / 2 \lambda)^{2}} \frac{k!2^{2 k}}{2 k!}\left(\frac{\Delta t}{2 \lambda}\right)^{2 k} \tag{10}
\end{equation*}
$$

■ Recurrence relation:

$$
C_{k}(\lambda \Delta t)=\left[\frac{2}{2 k-1}\right]\left(\frac{\Delta t}{2 \lambda}\right)^{2} C_{k-1}(\lambda \Delta t)
$$

- Expansion coefficient:

$$
\begin{equation*}
C_{k}(\lambda \Delta t)=e^{-(\Delta t / 2 \lambda)^{2}} \frac{k!2^{2 k}}{2 k!}\left(\frac{\Delta t}{2 \lambda}\right)^{2 k} \tag{10}
\end{equation*}
$$

- Recurrence relation:

$$
\begin{equation*}
C_{k}(\lambda \Delta t)=\left[\frac{2}{2 k-1}\right]\left(\frac{\Delta t}{2 \lambda}\right)^{2} C_{k-1}(\lambda \Delta t) \tag{11}
\end{equation*}
$$

Laguerre expansion

- Expansion coefficient:

$$
\begin{equation*}
\phi_{k}\left(\lambda^{2} L^{2}\right)=\mathcal{L}_{k}^{-1 / 2}\left(\lambda^{2} L^{2}\right) \tag{12}
\end{equation*}
$$

■ Recurrence relation:

- Expansion coefficient:

$$
\begin{equation*}
\phi_{k}\left(\lambda^{2} L^{2}\right)=\mathcal{L}_{k}^{-1 / 2}\left(\lambda^{2} L^{2}\right) \tag{12}
\end{equation*}
$$

- Recurrence relation:

$$
\begin{equation*}
\phi_{k}\left(x^{2}\right)=\frac{\left(2 k-3 / 2-x^{2}\right)}{k} \phi_{k-1}\left(x^{2}\right)-\frac{(k-3 / 2)}{k} \phi_{k-2}\left(x^{2}\right) \tag{13}
\end{equation*}
$$

- Expansion coefficient:

$$
\begin{equation*}
\phi_{k}\left(\lambda^{2} L^{2}\right)=\mathcal{L}_{k}^{-1 / 2}\left(\lambda^{2} L^{2}\right) \tag{12}
\end{equation*}
$$

- Recurrence relation:

$$
\begin{gather*}
\phi_{k}\left(x^{2}\right)=\frac{\left(2 k-3 / 2-x^{2}\right)}{k} \phi_{k-1}\left(x^{2}\right)-\frac{(k-3 / 2)}{k} \phi_{k-2}\left(x^{2}\right) \tag{13}\\
\phi_{0}\left(x^{2}\right)=1 \quad \text { and } \quad \phi_{1}\left(x^{2}\right)=\left(1 / 2-x^{2}\right)
\end{gather*}
$$

$$
\begin{equation*}
P(x, t+\Delta t)+P(x, t-\Delta t)=2 \cos (L \Delta t) P(x, t)+S(x, t \pm \Delta t) \tag{14}
\end{equation*}
$$

■ Recursive solution

$$
\begin{gather*}
P(x, t+\Delta t)+P(x, t-\Delta t)=2 \sum_{k=0}^{\infty} C_{k}(\lambda \Delta t) \phi_{k}\left(\lambda^{2} L^{2}\right) P(t) \\
+S(x, t \pm \Delta t) \tag{15}
\end{gather*}
$$

- Second order approximation in time

$$
\begin{align*}
P(x, t+\Delta t)+P(x, t & -\Delta t)=2 \alpha P(x, t)-\beta \Delta t^{2} L^{2} P(x, t) \\
& +S(x, t \pm \Delta t) \tag{16}
\end{align*}
$$

where

$$
\alpha=C_{0}\left[1+(\Delta t / 2 \lambda)^{2}\right] \quad \text { and } \quad \beta=C_{0}=e^{-(\Delta t / 2 \lambda)^{2}}
$$

$$
R=\pi c \sqrt{\left(1 / \Delta x^{2}\right)+\left(1 / \Delta z^{2}\right)} \quad \text { and } \quad \lambda=N / R
$$

Plot with the results of the expansions of the cosine function using 4 terms by: Taylor series, Chebyshev and Laguerre polynomial expansions.

P-velocity model for the salt dome model.

Seismic Modeling Results

Snapshots at the times of: 0.8 s and 1 s using Chebyshev expansion (top) and Laguerre expansion (bottom). Maximum frequency of 25 Hz and with a time stepping of $2 \mathrm{~ms}^{\square}$.

Seismic Modeling Results

Snapshots generated from the salt dome model using Chebyshev (a) and Laguerre expansion (b) at the time of 1s. Maximum frequency of 25 Hz and with a time stepping of 2 ms .

Seismic Modeling Results

Seismogram generated from the salt dome model using the Chebyshev and Laguerre expansion with time stepping of 2 ms . The data was recorded at the depth of 20 m .

EAGE-SEG model and zero offset section.

Seismic Migration Results

RTM results of the EAGE-SEG data set using 5 and 10 recursion terms.

Seismic Migration Results

RTM result of the EAGE-SEG data set using 5 recursion terms highlighting the imaged structures.

Conclusions

■ Approximations for the cosine operator using Hermite and Laguerre polynomials;

- Satisfactory results for seismic modeling of complex models, stable and free of dispersion noise;
- RTM of pos-stack dataset with high quality results;
- Parameter λ was set equal to $8 / R$ which ensured best results.

Acknowledgements

This research was supported by CNPq and INCT-GP/CNPq. The facility support from CPGG/UFBA is also acknowledged.

